Case study 1: voltage power optimisation

The Geoffrey Thompson Fruit Packing Co Pty Ltd (Geoff Thompson’s) packhouse and cold storage in Shepparton, Victoria produces and packs around 52,800 tonnes of apples and pears per year and is one of the largest temperate fruit cold storage facilities in Australia with 56 cold storage rooms. From October 2012 to September 2013 the facility used just over 7.8 million kWh (7,889 MWh) of electricity at a cost of just over $1 million (excluding GST).

Montague Narre Warren (Montague’s) in the Yarra Valley, Victoria, produces and packs approximately 13,560 tonnes of apples, stonefruit and pears annually and is classified as a large enterprise. From May 2013 to February 2014 their packhouse and cool rooms consumed over 3.7 million kWh (3,744 MWh) of electricity at a cost of over $534,000 (excluding GST).

Both these orchard facilities demonstrated high potential for energy savings through the optimisation of voltage power.

Voltage Power Optimisation

The average voltage supplied from the Australian grid is around 242V, however most electrical equipment is designed to operate efficiently at 220V. Voltage Power Optimisation (VPO) units optimise the voltage supplied from the grid to reduce the voltage to the preferred level (typically 220V) to enable plant equipment to run as efficiently as possible.

VPO units implement a controlled reduction in the voltage supplied to the equipment to reduce usage, demand and reactive power. This is important because reduced usage means a lower electricity bill.

Site savings opportunities:

- Install Voltage Power Optimisation units to main electrical supply to packhouse buildings.
- Save $54-58,000 every year with an initial investment of $125-285,000.
- Payback period of 2.2-5.2 years.

VPO systems are generally installed on the main electrical supply to a building, allowing all equipment within the building to benefit from the controlled voltage supply.

A Voltage Power Optimisation unit can be installed on the building’s main electrical supply to reduce electricity costs.

(Source image: www.powerperfector.com.au)
Costs and savings of installing Voltage Power Optimisation at two sites:

<table>
<thead>
<tr>
<th></th>
<th>Annual Electricity savings (kWh)</th>
<th>Annual Electricity cost savings ($)</th>
<th>Capital Cost ($)</th>
<th>Simple Payback Period (years)</th>
<th>Percent reduction of total electricity usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geoff Thompson’s</td>
<td>453,947</td>
<td>54,474</td>
<td>285,000</td>
<td>5.2</td>
<td>8.0%</td>
</tr>
<tr>
<td>Montague’s</td>
<td>404,593</td>
<td>57,857</td>
<td>125,342</td>
<td>2.2</td>
<td>10.8%</td>
</tr>
</tbody>
</table>

At Montague’s, a VPO unit could be fitted to the facility’s single 1,250kVA transformer. At Geoff Thompson’s two VPO units would be required to serve their 1,500 kVA and a 750kVA electrical supplies.

Benefits of Voltage Power Optimisation

The benefits of VPO depend upon the grid voltage supplied and the types of equipment on site. The greatest benefits occur when the supplied grid voltage is at the high end of the acceptable range and the electricity on site consists of predominantly inductive loads such as motors and certain types of lighting.

A total site electricity savings of 8% for Geoff Thompson’s is possible. At Montague’s, total site electricity savings could be 10.8%.

Additional savings at both sites include:

Enable power conditioning – reduced voltage enables the strain on electrical equipment to be reduced, achieving reduced maintenance requirements and longer service life for equipment. For some businesses that have implemented VPO, they have reduced maintenance costs by as much as 10%.

Improve power factor – improvements in power factor of between 3-10% are immediately identifiable as a result of VPO reducing reactive power.

Provide transient protection – VPO can protect equipment from common transient events, which are short spikes in the supply voltage that can damage equipment.

Implementation requirements

- Conduct voltage logging to determine power saving potential. Confirm supply and installation costs.
- Engage local electricity authority to ensure compliance of installation.
- Identify the least disruptive time of day to install the VPO as power will be shutdown and arrange for temporary alternative power if needed.
- Organise pre-works in advance to minimise power shutdown and down time.

Acknowledgement: ‘Watts in Your Business’ is funded by the Department of Industry as part of the Energy Efficiency Information Grants program and managed by Apple and Pear Australia Ltd (APAL).

Disclaimer: The views expressed herein are not necessarily the views of the Commonwealth of Australia, Apple and Pear Australia Ltd, KMH Environmental, Summerfruit Australia Ltd or the Cherry Growers of Australia Inc. and none of these organisations, neither jointly or severally, accepts responsibility for any information or advice.

Watts in Your Business is supported by the following organisations to help fruit businesses cut energy use and costs:

For more information contact APAL:

03 9329 3511 | info@apal.org.au | www.apal.org.au