Understanding soils for improved water and nutrient use efficiency

Nigel Swarts, Bi Zheng Tan, Dugald Close, Marcus Hardie, Steve Green

Senior Research Fellow
Tasmanian Institute of Agriculture (TIA)
Nitrogen Use Efficiency

Highest in spring
- (~30% = 15 kg N ha\(^{-1}\))

Halved in summer and 50-50 split
- (7.5 kg N ha\(^{-1}\))

Spring growth is more active, **fruit**, **leaf**, **shoot** are strong sinks

Summer has no **fruit**, less photosynthetic activity

Yield: ~ 27 t ha\(^{-1}\)
Rate: 50 kg N ha\(^{-1}\)
Spring vs. summer fertigation

Fertilizer N partitioning spring

- 9.7 g N tree\(^{-1}\)
- 14.9% 1.8% 8.7%
- 14.7%
- 5.5%
- 2.7%

Fertilizer N partitioning summer

- 5.3 g N tree\(^{-1}\)
- 42.6%
- 14.7%
- 1.5%
- 13.7%
- 0.9%

Legend:
- First year wood
- Leaf foliage
- Fruit
- Old wood
- Root
- Spur & bud
- Trunk
Tree N status at dormancy

- **Summer and spring fertigation** makes similar contribution to storage

- Total N is the same, very small difference in fertiliser N

- Plant has other ways to acquire or accumulate storage N
Seasonal pattern of tree water use by 1-yr old Jazz apples (Tasmania)

- Measurements to define the water use over the whole growing season
Seasonal pattern of tree water use by 3-yr old Jazz apples (Tasmania)

- Quantify the link between climate and tree size/age using FAO-56 crop factor approach
https://www.applesoils.com/
Soil characterisation of SE Australian Apple growing regions

- Morphology
- Chemistry
- Hydrology
- Management
Morphology

<table>
<thead>
<tr>
<th>Layer</th>
<th>Depth</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0-17 cm</td>
<td>Dark grey, 5YR 4/1; Coarse sandy clay loam; moderate 1-5 mm granular structure; no mottles; few 50-80 mm sub-rounded coarse fragments (Qtz); many very fine to fine pores; many very fine to fine roots; abrupt wavy boundary to</td>
</tr>
<tr>
<td>B21</td>
<td>17-27 cm</td>
<td>Reddish yellow; 7.5 YR 6/6; coarse sandy light clay; weak structure; many, fine to medium, faint orange, diffuse mottles (M); common, very fine pores; no roots; clear boundary to</td>
</tr>
<tr>
<td>B22</td>
<td>27-40 cm</td>
<td>Reddish yellow, 5YR 6/6; Heavy Clay; common, fine to medium distinct, red, sharp mottles (M) and many, fine to medium, distinct, diffuse, grey, mottles (M); few, very fine pores; few coarse roots and few very fine roots; gradual boundary to</td>
</tr>
<tr>
<td>B23</td>
<td>40-70 cm</td>
<td>Reddish Yellow, 7.5 YR 6/8; medium clay; many medium to coarse, reddish yellow mottles (M) and many medium distinct red clear mottles (M); few, very fine pores; few very fine roots.</td>
</tr>
</tbody>
</table>
Chemistry

‘What is the resource beneath my feet?’

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Nitrate N mg/kg</th>
<th>Ammonia N mg/kg</th>
<th>Phosphorus Colwell mg/kg</th>
<th>Potassium Colwell mg/kg</th>
<th>Sulphur mg/kg</th>
<th>Organic Carbon %</th>
<th>Conductivity ds/m</th>
<th>pH Level (CaCl$_2$)</th>
<th>pH Level (H$_2$O)</th>
<th>Exchangeable Cations meq/100g</th>
<th>CEC meq/100g</th>
<th>ESP %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A11</td>
<td>4</td>
<td>3</td>
<td>295</td>
<td>170</td>
<td>7.2</td>
<td>2.48</td>
<td>0.052</td>
<td>5.7</td>
<td>6.5</td>
<td>2.58</td>
<td>4.07</td>
<td>2.46</td>
</tr>
<tr>
<td>A12</td>
<td>3</td>
<td>2</td>
<td>103</td>
<td>104</td>
<td>14</td>
<td>2.54</td>
<td>0.061</td>
<td>4.7</td>
<td>5.8</td>
<td>1.86</td>
<td>2.58</td>
<td>4.65</td>
</tr>
<tr>
<td>B1</td>
<td>2</td>
<td>1</td>
<td>13</td>
<td>81</td>
<td>21.2</td>
<td>1.22</td>
<td>0.073</td>
<td>4.5</td>
<td>5.4</td>
<td>1.11</td>
<td>1.58</td>
<td>6.33</td>
</tr>
<tr>
<td>B21</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>112</td>
<td>33.8</td>
<td>0.99</td>
<td>0.092</td>
<td>4.5</td>
<td>5.3</td>
<td>1.73</td>
<td>2.32</td>
<td>4.31</td>
</tr>
</tbody>
</table>

Values for Colwell P represent horizon based sampling and thus may differ to traditional Colwell P sampling at 0 - 100 mm or 0 - 75 mm depth.
Hydrology
Hydrology

<table>
<thead>
<tr>
<th>Horizon (cm)</th>
<th>Bulk Density (g/cm³)</th>
<th>Hydraulic Conductivity (mm/hr)</th>
<th>% Moisture per Horizon</th>
<th>mm of Soil Water</th>
<th>Model parameters - van Genuchten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Saturated water content 8s</td>
</tr>
<tr>
<td>A1</td>
<td>1.51</td>
<td>150</td>
<td>42.4</td>
<td>72.0</td>
<td>0.423</td>
</tr>
<tr>
<td>B21</td>
<td>1.94</td>
<td>Est 0.5</td>
<td>27.2</td>
<td>27.2</td>
<td>0.272</td>
</tr>
<tr>
<td>B22</td>
<td>1.40</td>
<td>Est 0.05</td>
<td>48.1</td>
<td>62.5</td>
<td>0.480</td>
</tr>
<tr>
<td>B23</td>
<td>1.41</td>
<td>0.005</td>
<td>47.4</td>
<td>151.7</td>
<td>0.474</td>
</tr>
</tbody>
</table>

Total soil moisture to 70 cm depth: 313 mm

% refers to per cent of total soil volume. RAW refers to readily available water between -10 and -50 kPa. PAWC refers to plant available water between field capacity -10 kPa and the permanent wilting point at -1500 kPa. Drainable porosity refers to moisture held between saturation and -10 kPa. EST. estimated value for hydraulic conductivity.
Hydrology

Total Soil Moisture: to 70 cm depth: Yellow Chromosol: Harcourt

- **Unavailable**
- **Available - Tightly Held**
- **Readily Available**
- **Drainable Porosity**

- ‘Drained’ ... Water that drains under gravity
- ‘Target’ Water that can be easily accessed from the soil
- ‘Backup’ Water that the plant can get but under stress
- ‘Dead’ Beyond what the tree can get
Hydrology
Strategic Irrigation and Nitrogen Assessment Tool for Apples

SOIL DATA
- Water content [L/L]
- Pressure head [cm]
- Sandy loam
- Coarse sand
- Saturation
- Field capacity
- Wilting point
- Air dry
- Refill point

CROP DATA
- Variety
- Training system
- Root stock
- Phenology
- Planting density
- Yield target

CLIMATE DATA
- Historical (BOM)
- Daily values
- Solar radiation
- Temp & RH%
- Wind speed
- Rainfall

MANAGEMENT
- Irrigation
- N Fertilizer
- Crop Load
- Timing
- Rates
- Strategies

SPASMO CORE

OUTCOMES
- Irrigation need
- Fertilizer need
- Yield & Response
- Benchmarking
- Planning
- What-if answers