BIOCHAR

as a soil amendment

Tasmanian Team members:
 Sally Bound, Marcus Hardie, Alieta Eyles, Garth Oliver,
 Steve Paterson, Justin Direen, Dugald Close

NZ Team members:
 Brent Clothier, Steve Green, Markus Deurer,
 Roberta Gentile

TIA is a joint venture of the University of Tasmania and the Tasmanian Government
Biochar to the Rescue

- Reduce soil acidity
- Increase soil moisture
- Increase water retention
- Improve soil structure
- Increase number of beneficial soil microbes
- Stimulates soil microorganisms
- Increase productivity and crop yields
- Reduced leaching of nitrogen into ground water
- Reduce fertiliser use

Biochar can improve almost any soil.

http://www.biochar-international.org/biochar/faqs
What is biochar?

Biochar: charcoal resulting from heating of biomass in an oxygen-limited environment.
Trial Description

Location: Mountain River, Tasmania
Cultivar: Fuji (Naga-Fu 2)/M26
(with Royal Gala interstem)

Treatments:

i. control (untreated)
ii. biochar 47 t/ha or 5 kg /tree
iii. compost 10 t/ha
iv. biochar + compost

Biochar produced from the wood wastes of *Acacia* sp. produced at 550 ° C
(sourced from Pacific Pyrolysis, NSW)
Tree growth

<table>
<thead>
<tr>
<th></th>
<th>No. of fruit cm(^{-2}) TCSA*</th>
<th>Yield efficiency (kg cm(^{-2}) TCSA)</th>
<th>Average fruit weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012</td>
<td>2013</td>
<td>2012</td>
</tr>
<tr>
<td>Control</td>
<td>8.69</td>
<td>7.10</td>
<td>1.46</td>
</tr>
<tr>
<td>Biochar</td>
<td>9.88</td>
<td>8.13</td>
<td>1.82</td>
</tr>
<tr>
<td>Compost</td>
<td>8.45</td>
<td>6.89</td>
<td>1.54</td>
</tr>
<tr>
<td>B+C</td>
<td>7.37</td>
<td>6.72</td>
<td>1.35</td>
</tr>
</tbody>
</table>

2-way ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Biochar</th>
<th>Compost</th>
<th>B X C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>Not Significant</td>
<td>Not Significant</td>
<td>Not Significant</td>
</tr>
<tr>
<td>Yield efficiency</td>
<td>Not Significant</td>
<td>Not Significant</td>
<td>Not Significant</td>
</tr>
<tr>
<td>No of fruit</td>
<td>Not Significant</td>
<td>Not Significant</td>
<td>Not Significant</td>
</tr>
<tr>
<td>Fruit weight</td>
<td>Not Significant</td>
<td>Not Significant</td>
<td>Not Significant</td>
</tr>
<tr>
<td>Blossom density</td>
<td>Not Significant</td>
<td>Not Significant</td>
<td>Not Significant</td>
</tr>
</tbody>
</table>

No effect on...
- Yield
- Yield efficiency kg /cm\(^2\)
- No of fruit
- Fruit weight
- Blossom density

Sig. increase in stem girth

Tree Physiology

No significant effect on
- total leaf area
- photosynthetic capacity
- leaf nutrient concentration
- daily tree water use (sap flow)
- gas exchange

Leaf water potential (Mpa)

- Biochar Pre-dawn
- Control Pre-dawn
- Biochar Midday
- Control Midday

Nov Dec Feb Mar Apr

-3 -2.5 -2 -1.5 -1 -0.5 0

Soil Water and Porosity

No significant effect on:
• Field capacity
• Permanent wilting point
• Plant available water
• Soil moisture
• Aggregate stability
• Mesoporosity & Microporosity

Significantly:
• Reduced bulk density
• Increased total porosity
• Increased saturated water content.

SEM of Acacia green waste

Large pores created by worms

Soil Carbon and Acidity

- Both organic amendments increased soil C
- Biochar decreased rate of potential N mineralisation

Acidity
- Biochar pH $1:5 \text{CaCl}_2$ 6.40
- Unusual most are alkaline

After 20 months
- Control pH $1:2.5 \text{KCl}$ 6.14
- Biochar pH $1:2.5 \text{KCl}$ 5.61
Biochar significantly increased
- Phosphorous Concentration
- Phosphorous leaching
- Potassium Leaching
(Nitrogen 51% increase – not significant)

Biochar resulted in significantly more water moving through the soil profile.....worms

Hardie, et. al., (accepted) Effect of Biochar on Nutrient Leaching in a Young Apple Orchard. Journal of Environmental Quality
Changes in bacterial diversity - not significant or modest
Shift in the type of microbes in each treatment

Biochar to the Rescue

- Reduce soil acidity
- Increase soil moisture
- Increase water retention
- Improve soil structure
- Increase number of beneficial soil microbes
- Stimulates soil microorganisms
- Increase productivity and crop yields
- Reduced leaching of nitrogen into ground water
- Reduce fertiliser use

Biochar can improve almost any soil.
Biochar to the Rescue

- No Reduce soil acidity
- No Increase soil moisture
- No Increase water retention
- Yes Improve soil structure
- No Increase number of beneficial soil microbes
- Yes Stimulates soil microorganisms
- No Increase productivity and crop yields
- No Reduced leaching of nitrogen into ground water
- No Reduce fertiliser use

Biochar can improve almost any soil.

At the Mt Creek Site: Loamy Sand, Kurosol, Acacia Greenwaste Biochar, High Input System
Biochar to the Rescue

- Reduce soil acidity: No
- Increase soil moisture: No
- Increase water retention: No
- Improve soil structure: Yes
- Increase number of beneficial soil microbes: No
- Stimulates soil microorganisms: Yes
- Increase productivity and crop yields: No
- Reduced leaching of nitrogen into ground water: No
- Reduce fertiliser use: No

Biochar can improve almost any soil.

If it was a Low Input: low fertiliser and irrigation system would it have worked...????

Some biochars in some soils probably do work but not this biochar, at this site......
Acknowledgements

Thanks to a great team

Facilitated by funding from Horticulture Australia Ltd to the PIPS (Productivity, Irrigation, Pests and Soils) Orchard Productivity Program

And to Adrian and Scott Stevenson for providing the site and allowing us access at all hours